On numerical integration of differential equations
نویسندگان
چکیده
منابع مشابه
Geometric Numerical Integration of Differential Equations
What is geometric integration? ‘Geometric integration’ is the term used to describe numerical methods for computing the solution of differential equations, while preserving one or more physical/mathematical properties of the system exactly (i.e. up to round–off error)1. What properties can be preserved in this way? A first aspect of a dynamical system that is important to preserve is its phase ...
متن کاملThe numerical integration of ordinary differential equations
A reliable efficient general-purpose method for automatic digital computer integration of systems of ordinary differential equations is described. The method operates with the current values of the higher derivatives of a polynomial approximating the solution. It is thoroughly stable under all circumstances, incorporates automatic starting and automatic choice and revision of elementary interva...
متن کاملMultirate Numerical Integration for Ordinary Differential Equations
Subject headings: Multirate time stepping / Local time stepping / Ordinary differential equations / Stiff differential equations / Asymptotic stability / High-order Rosenbrock methods / Partitioned Runge-Kutta methods / Mono-tonicity / TVD / Stability / Convergence. Het onderzoek dat tot dit proefschrift heeft geleid werd mede mogelijk gemaakt door een Peter Paul Peterichbeurs –verstrekt door d...
متن کاملNumerical Integration of Ordinary Differential Equations on Manifolds
This paper is concerned with the problem of developing numerical integration algorithms for differential equations that, when viewed as equations in some Euclidean space, naturally evolve on some embedded submanifold. It is desired to construct algorithms whose iterates also evolve on the same manifold. These algorithms can therefore be viewed as integrating ordinary differential equations on m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scandinavian Actuarial Journal
سال: 1922
ISSN: 0346-1238,1651-2030
DOI: 10.1080/03461238.1922.10405343